Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal
نویسندگان
چکیده
MicroRNAs (miRNAs) have emerged as potential cancer therapeutics; however, their clinical use is hindered by lack of effective delivery mechanisms to tumor sites. Mesenchymal stem cells (MSCs) have been shown to migrate to experimental glioma and to exert anti-tumor effects by delivering cytotoxic compounds. Here, we examined the ability of MSCs derived from bone marrow, adipose tissue, placenta and umbilical cord to deliver synthetic miRNA mimics to glioma cells and glioma stem cells (GSCs). We examined the delivery of miR-124 and miR-145 mimics as glioma cells and GSCs express very low levels of these miRNAs. Using fluorescently labeled miRNA mimics and in situ hybridization, we demonstrated that all the MSCs examined delivered miR-124 and miR-145 mimics to co-cultured glioma cells and GSCs via gap junction- dependent and independent processes. The delivered miR-124 and miR-145 mimics significantly decreased the luciferase activity of their respected reporter target genes, SCP-1 and Sox2, and decreased the migration of glioma cells and the self-renewal of GSCs. Moreover, MSCs delivered Cy3-miR-124 mimic to glioma xenografts when administered intracranially. These results suggest that MSCs can deliver synthetic exogenous miRNA mimics to glioma cells and GSCs and may provide an efficient route of therapeutic miRNA delivery in vivo.
منابع مشابه
Mesenchymal Stem Cells: History, Isolation and Biology
Mesenchymal stem cells (MSCs) as a kind of adult stem cells possess two properties of long term selfrenewal ability and multilineage differentiation potential into skeletal cell lineages. MSCs were first isolated and described from bone marrow samples. Further investigations have identified several other tissues as alternative sources for these cells. In spite of the clinical importance of MSCs...
متن کاملFunctional Inhibition of Nucleostemin Gene-Acoordinator of Self-Renewal Ability-In Bone Marrow Derived Mesenchymal Stem Cells by Rnai Strategy
Purpose: The aim is to downregulate the expression level of NS as an important factor in sustaining stem cells and certain types of cancer cells self-renewal ability in bone marrow derived mesenchymal stem cells by RNAi strategy and investigate the effects of absence of NS in these cells. Materials and Methods: Double strand NS-specific and control siRNA oligos were designed and transfected in...
متن کاملA review of Biology and clinical use of Mesenchymal stem cell: an immune -modulator progenitor cell
Human mesenchymal stem cells (hMSCs), which also called mesenchymal stromal cells, are multipotent stem cell. Human MSCs typically are positive for the surface markers CD44, CD73, CD90, CD105, CD106, and also negative for hematopoietic markers CD34 and CD45.These cells can be isolated from postnatal bone marrow, adipose tissue, placenta, and scalp tissue, as well as from various fetal tissues. ...
متن کاملEvaluation of the role of mico-RNAs in cardiomyocytes differentiation of mesenchymal stem cells
Stem cells are a good alternative for regenerative medicine because of their characteristics such as self-renewal and differentiation potential. They are classified into different types of stem cells including embryonic stem cells, induced pluripotent stem cells, multipotent stem cells, and ultimately uni-potent stem cells. Mesenchymal stem cells extracted from adult tissues. Due to the lack of...
متن کاملDeregulation of Stemness-Related Genes in Endometriotic Mesenchymal Stem Cells: Further Evidence for Self-Renewal/Differentiation Imbalance
Background: Any irregularities in self-renewal/differentiation balance in endometriotic MSCs can change their fate and function, resulting in endometriosis development. This study aimed to evaluate the expression of OCT4 transcripts (OCT4A, OCT4B, and OCT4B1), SOX2, and NANOG in endometriotic MSCs to show their aberrant expression and to support self-renewal/differentiation imbalance in these c...
متن کامل